Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Yes, it is possible to have a relation on the set {a, b, c} that is both symmetric and transitive but not reflexive
Step-by-step explanation:
Let
Set A={a,b,c}
Now, define a relation R on set A is given by
R={(a,a),(a,b),(b,a),(b,b)}
For reflexive
A relation is called reflexive if (a,a)[tex]\in R[/tex] for every element a[tex]\in A[/tex]
[tex](c,c)\notin R[/tex]
Therefore, the relation R is not reflexive.
For symmetric
If [tex](a,b)\in R[/tex] then [tex](b,a)\in R[/tex]
We have
[tex](a,b)\in R[/tex] and [tex](b,a)\in R[/tex]
Hence, R is symmetric.
For transitive
If (a,b)[tex]\in R[/tex] and (b,c)[tex]\in R[/tex] then (a,c)[tex]\in R[/tex]
Here,
[tex](a,a)\in R[/tex] and [tex](a,b)\in R[/tex]
[tex]\implies (a,b)\in R[/tex]
[tex](a,b)\in R[/tex] and [tex](b,a)\in R[/tex]
[tex]\implies (a,a)\in R[/tex]
Therefore, R is transitive.
Yes, it is possible to have a relation on the set {a, b, c} that is both symmetric and transitive but not reflexive.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.