Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Complete question:
A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.
Answer:
The tension on the rope is 1.95 N
Explanation:
The general equation of a progressive wave is given as;
[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]
Compare the given equation with the general equation of wave, the following parameters will be deduced.
A = 0.75 cm
k = 0.400π cm⁻¹
ω = 250π s⁻¹
The frequency of the wave is calculated as;
ω = 2πf
2πf = 250π
2f = 250
f = 250/2
f = 125 Hz
The wavelength of the wave is calculated as;
[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]
The velocity of the wave is calculated as;
v = fλ
v = 125 x 0.05
v = 6.25 m/s
The tension on the rope is calculated as;
[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]
Therefore, the tension on the rope is 1.95 N
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.