Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Complete question:
A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.
Answer:
The tension on the rope is 1.95 N
Explanation:
The general equation of a progressive wave is given as;
[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]
Compare the given equation with the general equation of wave, the following parameters will be deduced.
A = 0.75 cm
k = 0.400π cm⁻¹
ω = 250π s⁻¹
The frequency of the wave is calculated as;
ω = 2πf
2πf = 250π
2f = 250
f = 250/2
f = 125 Hz
The wavelength of the wave is calculated as;
[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]
The velocity of the wave is calculated as;
v = fλ
v = 125 x 0.05
v = 6.25 m/s
The tension on the rope is calculated as;
[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]
Therefore, the tension on the rope is 1.95 N
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.