Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.

Sagot :

Complete question:

A transverse wave on a rope is given by [tex]y \ (x, \ t) = (0.75 \ cm) \ cos \ \pi[(0.400 \ cm^{-1}) x + (250 \ s^{-1})t][/tex]. The mass per unit length of the rope is 0.0500 kg/m. Find the tension. Express your answer in newtons.

Answer:

The tension on the rope is 1.95 N

Explanation:

The general equation of a progressive wave is given as;

[tex]y \ (x,t) = A \ cos(kx \ + \omega t)[/tex]

Compare the given equation with the general equation of wave, the following parameters will be deduced.

A = 0.75 cm

k = 0.400π cm⁻¹

ω = 250π s⁻¹

The frequency of the wave is calculated as;

ω = 2πf

2πf = 250π

2f = 250

f = 250/2

f = 125 Hz

The wavelength of the wave is calculated as;

[tex]\lambda = \frac{2\pi}{k} \\\\\lambda = \frac{2\pi }{0.4 \pi} = 5 \ cm = 0.05 \ m[/tex]

The velocity of the wave is calculated as;

v = fλ

v = 125 x 0.05

v = 6.25 m/s

The tension on the rope is calculated as;

[tex]v = \sqrt{\frac{T}{\mu}} \\\\where;\\\\T \ is \ the \ tension \ of \ the \ rope\\\\\mu \ is \ the \ mass \ per \ unit \ length = 0.05 \ kg/m\\\\v^2 = \frac{T}{\mu} \\\\T = v^2 \mu\\\\T = (6.25)^2\times (0.05)\\\\T = 1.95 \ N[/tex]

Therefore, the tension on the rope is 1.95 N