Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]10[/tex].
Step-by-step explanation:
See below for a proof of why all but the first digit of this [tex]N[/tex] must be "[tex]9[/tex]".
Taking that lemma as a fact, assume that there are [tex]x[/tex] digits in [tex]N[/tex] after the first digit, [tex]\text{A}[/tex]:
[tex]N = \overline{\text{A} \, \underbrace{9 \cdots 9}_{\text{$x$ digits}}}[/tex], where [tex]x[/tex] is a positive integer.
Sum of these digits:
[tex]\text{A} + 9\, x= 2021[/tex].
Since [tex]\text{A}[/tex] is a digit, it must be an integer between [tex]0[/tex] and [tex]9[/tex]. The only possible value that would ensure [tex]\text{A} + 9\, x= 2021[/tex] is [tex]\text{A} = 5[/tex] and [tex]x = 224[/tex].
Therefore:
[tex]N = \overline{5 \, \underbrace{9 \cdots 9}_{\text{$224$ digits}}}[/tex].
[tex]N + 1 = \overline{6 \, \underbrace{000 \cdots 000000}_{\text{$224$ digits}}}[/tex].
[tex]N + 2021 = 2020 + (N + 1) = \overline{6 \, \underbrace{000 \cdots 002020}_{\text{$224$ digits}}}[/tex].
Hence, the sum of the digits of [tex](N + 2021)[/tex] would be [tex]6 + 2 + 2 = 10[/tex].
Lemma: all digits of this [tex]N[/tex] other than the first digit must be "[tex]9[/tex]".
Proof:
The question assumes that [tex]N\![/tex] is the smallest positive integer whose sum of digits is [tex]2021[/tex]. Assume by contradiction that the claim is not true, such that at least one of the non-leading digits of [tex]N[/tex] is not "[tex]9[/tex]".
For example: [tex]N = \overline{(\text{A})\cdots (\text{P})(\text{B}) \cdots (\text{C})}[/tex], where [tex]\text{A}[/tex], [tex]\text{P}[/tex], [tex]\text{B}[/tex], and [tex]\text{C}[/tex] are digits. (It is easy to show that [tex]N[/tex] contains at least [tex]5[/tex] digits.) Assume that [tex]\text{B} \![/tex] is one of the non-leading non-"[tex]9[/tex]" digits.
Either of the following must be true:
- [tex]\text{P}[/tex], the digit in front of [tex]\text{B}[/tex] is a "[tex]0[/tex]", or
- [tex]\text{P}[/tex], the digit in front of [tex]\text{B}[/tex] is not a "[tex]0[/tex]".
If [tex]\text{P}[/tex], the digit in front of [tex]\text{B}[/tex], is a "[tex]0[/tex]", then let [tex]N^{\prime}[/tex] be [tex]N[/tex] with that "[tex]0\![/tex]" digit deleted: [tex]N^{\prime} :=\overline{(\text{A})\cdots (\text{B}) \cdots (\text{C})}[/tex].
The digits of [tex]N^{\prime}[/tex] would still add up to [tex]2021[/tex]:
[tex]\begin{aligned}& \text{A} + \cdots + \text{B} + \cdots + \text{C} \\ &= \text{A} + \cdots + 0 + \text{B} + \cdots + \text{C} \\ &= \text{A} + \cdots + \text{P} + \text{B} + \cdots + \text{C} \\ &= 2021\end{aligned}[/tex].
However, with one fewer digit, [tex]N^{\prime} < N[/tex]. This observation would contradict the assumption that [tex]N\![/tex] is the smallest positive integer whose digits add up to [tex]2021\![/tex].
On the other hand, if [tex]\text{P}[/tex], the digit in front of [tex]\text{B}[/tex], is not "[tex]0[/tex]", then [tex](\text{P} - 1)[/tex] would still be a digit.
Since [tex]\text{B}[/tex] is not the digit [tex]9[/tex], [tex](\text{B} + 1)[/tex] would also be a digit.
let [tex]N^{\prime}[/tex] be [tex]N[/tex] with digit [tex]\text{P}[/tex] replaced with [tex](\text{P} - 1)[/tex], and [tex]\text{B}[/tex] replaced with [tex](\text{B} + 1)[/tex]: [tex]N^{\prime} :=\overline{(\text{A})\cdots (\text{P}-1) \, (\text{B} + 1) \cdots (\text{C})}[/tex].
The digits of [tex]N^{\prime}[/tex] would still add up to [tex]2021[/tex]:
[tex]\begin{aligned}& \text{A} + \cdots + (\text{P} - 1) + (\text{B} + 1) + \cdots + \text{C} \\ &= \text{A} + \cdots + \text{P} + \text{B} + \cdots + \text{C} \\ &= 2021\end{aligned}[/tex].
However, with a smaller digit in place of [tex]\text{P}[/tex], [tex]N^{\prime} < N[/tex]. This observation would also contradict the assumption that [tex]N\![/tex] is the smallest positive integer whose digits add up to [tex]2021\![/tex].
Either way, there would be a contradiction. Hence, the claim is verified: all digits of this [tex]N[/tex] other than the first digit must be "[tex]9[/tex]".
Therefore, [tex]N[/tex] would be in the form: [tex]N = \overline{\text{A} \, \underbrace{9 \cdots 9}_{\text{many digits}}}[/tex], where [tex]\text{A}[/tex], the leading digit, could also be [tex]9[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.