Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer with Step-by-step explanation:
We are given that
[tex]a+ib=\sqrt{\frac{1+i}{1-i}}[/tex]
We have to prove that
[tex]a^2+b^2=1[/tex]
[tex]a+ib=\sqrt{\frac{(1+i)(1+i)}{(1-i)(1+i)}}[/tex]
Using rationalization property
[tex]a+ib=\sqrt{\frac{(1+i)^2}{(1^2-i^2)}}[/tex]
Using the property
[tex](a+b)(a-b)=a^2-b^2[/tex]
[tex]a+ib=\sqrt{\frac{(1+i)^2}{(1-(-1))}}[/tex]
Using
[tex]i^2=-1[/tex]
[tex]a+ib=\frac{1+i}{\sqrt{2}}[/tex]
[tex]a+ib=\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}[/tex]
By comparing we get
[tex]a=\frac{1}{\sqrt{2}}, b=\frac{1}{\sqrt{2}}[/tex]
[tex]a^2+b^2=(\frac{1}{\sqrt{2}})^2+(\frac{1}{\sqrt{2}})^2[/tex]
[tex]a^2+b^2=\frac{1}{2}+\frac{1}{2}[/tex]
[tex]a^2+b^2=\frac{1+1}{2}[/tex]
[tex]a^2+b^2=\frac{2}{2}[/tex]
[tex]a^2+b^2=1[/tex]
Hence, proved.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.