Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

HELP ASAP I WILL GIVE BRAINLIST

Find the length of an arc of a circle with a 8-cm radius associated with a central angle of 240 degrees. Give your answer in exact and approximate form to the nearest hundredth. Show and explain your work


Sagot :

Answer:

33.51 cm

Step-by-step explanation:

240/360 = 2/3 (Arc length is 2/3 of the total circumference)

C = 2[tex]\pi[/tex]r             ( Calculate the total circumference)    

C = 2(8)[tex]\pi[/tex]

C = 50.265

2/3(50.265)      (Take 2/3 of the circumference. times 2 divide by 3)

33.51

Use a calculator and leave the answer to C and then multiply and divide. You get a more precise answer.

The exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.

The arc length in approximate form is 33.49 radians.

What is the formula for arc length?

[tex]s = r\times \theta[/tex]

where r is the radius of the circle and [tex]\theta[/tex] is the central angle in radians.

How to convert angle from degrees to radians?

Radians = Degrees ×[tex]\frac{\pi}{180^{\circ}}[/tex]

For given question,

We have been given a circle with a 8-cm radius associated with a central angle of 240 degrees.

[tex]r=8~cm,~\theta=240^{\circ}[/tex]

First we convert angle in radians.

[tex]\theta=240^{\circ}\\\\\theta=240^{\circ} \times \frac{\pi}{180^{\circ}}\\\\ \theta=\frac{4\pi}{3}[/tex]

Using the formula of the arc length,

[tex]s=8\times \frac{4\pi}{3} \\\\s=\frac{32\pi}{3}[/tex]

The exact answer of the arc length is [tex]s=\frac{32\pi}{3}[/tex]

Substitute the value of [tex]\pi = 3.14[/tex]

So, the arc length would be,

[tex]\Rightarrow s=\frac{32\times \pi}{3}\\\\\Rightarrow s=\frac{32\times 3.14}{3}\\\\\Rightarrow s=33.49[/tex]radians

Therefore, the exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.

the arc length in approximate form is 33.49 radians.

Learn more about the arc length here:

https://brainly.com/question/16403495

#SPJ2

Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.