At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]x=6[/tex]
Step-by-step explanation:
We want to solve the equation:
[tex]\displaystyle \log_6(2x-6)+\log_6x=2[/tex]
Recall the property:
[tex]\displaystyle \log_bx+\log_by=\log_b(xy)[/tex]
Hence:
[tex]\log_6(x(2x-6))=2[/tex]
Next, recall that by the definition of logarithms:
[tex]\displaystyle \log_b(a)=c\text{ if and only if } b^c=a[/tex]
Therefore:
[tex]6^2=x(2x-6)[/tex]
Solve for x. Simplify and distribute:
[tex]36=2x^2-6x[/tex]
We can divide both sides by two:
[tex]x^2-3x=18[/tex]
Subtract 18 from both sides:
[tex]x^2-3x-18=0[/tex]
Factor:
[tex](x-6)(x+3)=0[/tex]
Zero Product Property:
[tex]x-6=0\text{ or } x+3=0[/tex]
Solve for each case. Hence:
[tex]x=6\text{ or } x=-3[/tex]
Next, we must check the solutions for extraneous solutions. To do so, we can simply substitute the solutions back into the original equations and examine its validity.
Checking x = 6:
[tex]\displaystyle \begin{aligned} \log_{6}(2(6)-6)+\log_{6}6&\stackrel{?}{=} 2 \\ \\ \log_6(12-6)+(1)&\stackrel{?}{=}2 \\ \\ \log_6(6)+1&\stackrel{?}{=}2 \\ \\ 1+1=2&\stackrel{\checkmark}{=}2\end{aligned}[/tex]
Hence, x = 6 is indeed a solution.
Checking x = -3:
[tex]\displaystyle\begin{aligned} \log_6(2(-3)-6) + \underbrace{\log_6-3}_{\text{und.}} &\stackrel{?}{=} 2\\ \\ \end{aligned}[/tex]
Since the second term is undefined, x = -3 is not a solution.
Therefore, our only solution is x = 6.
Answer:
x = 6
Step-by-step explanation:
The given logarithmic equation is ,
[tex]\implies log_{6}(2x - 6) + log_{6}x = 2[/tex]
We can notice that the bases of both logarithm is same . So we can use a property of log as ,
[tex]\bf \to log_a b + log_a c = log_a {( ac)} [/tex]
So we can simplify the LHS and write it as ,
[tex]\implies log_{6} \{ x ( 2x - 6 )\} = 2 [/tex]
Now simplify out x(2x - 6 ) . We get ,
[tex]\implies log_6 ( 2x^2 - 6x ) = 2 [/tex]
Again , we know that ,
[tex]\bf \to log_a b = c , a^c = b [/tex]
Using this we have ,
[tex]\implies 2x^2 - 6x = 6^2 \\\\\implies 2x^2 - 6x -36 = 0 [/tex]
Now simplify the quadratic equation ,
[tex]\implies x^2 - 3x - 18 = 0 \\\\\implies x^2 -6x + 3x -18=0\\\\\implies x( x -6) +3( x - 6 ) = 0 \\\\\implies (x-6)(x+3) = 0 \\\\\implies x = 6 , -3 [/tex]
Since logarithms are not defined for negative numbers or zero , therefore ,
[tex]\implies 2x - 6 > 0 \\\\\implies x > 3 [/tex]
Therefore the equation is not defined at x = -3 . Hence the possible value of x is 6 .
[tex]\implies \underline{\underline{ x \quad = \quad 6 }}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.