Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
1) [tex]T_{(a, \, b)}[/tex] = f(x - a) + b
Coordinate change
(x, y) → (x + a, y + b)
2) RFy(x, y) = f(-x)
Coordinate change
(x, y) → (-x, y)
3) RFx(x, y) = -f(x)
Coordinate change
(x, y) → (-y, x)
4) RCCW90(x, y) = f⁻¹(-x)
Coordinate change
(x, y) → (-y, x)
5) RCCW180(x, y) = -(f(-x))
Coordinate change
(x, y) → (-x, -y)
6) A 270 degrees counterclockwise rotation gives;
RCCW270(x, y) = -(f⁻¹(x))
Coordinate change
(x, y) → (y, -x)
Step-by-step explanation:
1) Horizontal translation a units right = f(x - a)
The vertical translation b units up = f(x) + b
Therefore, we get; [tex]T_{(a, \, b)}[/tex] = f(x - a) + b
The coordinate change
(x, y) → (x + a, y + b)
2) A reflection across the y-axis = RFy(x, y) = f(-x)
The coordinate change
(x, y) → (-x, y)
3) A reflection across the x-axis gives RFx(x, y) → (x, -y)
Therefore, in function notation, we get;
RFx(x, y) = -f(x)
4) A 90 degrees rotation counterclockwise, we get RotCCW90(x, y) → (-y, x)
In function notation RotCCW90(x, y) = INVf(-x) = f⁻¹(-x)
5) A 180 degrees counterclockwise rotation about the origin gives;
(x, y) → (-x, -y)
Therefore, we get;
In function notation RotCCW180(x, y) = -(f(-x))
6) A 270 degrees counterclockwise rotation gives RotCCW270(x, y) → (y, -x)
In function notation RotCCW270(x, y) = -(f⁻¹(x))
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.