Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
B) 67°C.
Step-by-step explanation:
Newton's Law of Cooling is given by:
[tex]\displaystyle \frac{dT}{dt}=k(T-A)[/tex]
Where T is the temperature of the coffee, A is the room temperature, and k is a positive constant.
We are given that the coffee cools from 100°C to 90°C in one minute at a room temperature A of 25°C.
And we want to find the temperature of the coffee after four minutes.
First, solve the differential equation. Multiply both sides by dt and divide both sides by (T - A). Hence:
[tex]\displaystyle \frac{dT}{T-A}=k\, dt[/tex]
Take the integral of both sides:
[tex]\displaystyle \int \frac{dT}{T-A}=\int k\, dt[/tex]
Integrate:
[tex]\displaystyle \ln\left|T-A\right| = kt+C[/tex]
Raise both sides to e:
[tex]|T-A|=e^{kt+C}=Ce^{kt}[/tex]
The temperature of the coffee T will always be greater than or equal to the room temperature A. Thus, we can remove the absolute value:
[tex]\displaystyle T=Ce^{kt}+A[/tex]
We are given that A = 25. Hence:
[tex]\displaystyle T=Ce^{kt}+25[/tex]
Since the coffee cools from 100°C to 90°C, the initial temperature of the coffee was 100°C. Thus, when t = 0,T = 100:
[tex]100=Ce^{k(0)}+25\Rightarrow C=75[/tex]
Hence:
[tex]T=75e^{kt}+25[/tex]
We are given that the coffee cools from 100°C to 90°C after one minute at a room temperature of 25°C.
So, T = 90 given that t = 1. Substitute:
[tex]90=75e^{k(1)}+25[/tex]
Solve for k:
[tex]\displaystyle e^k=\frac{13}{15}\Rightarrow k=\ln\left(\frac{13}{15}\right)[/tex]
Therefore:
[tex]\displaystyle T=75e^{\ln({}^{13}\! /\!{}_{15})t}+25[/tex]
Then after four minutes, the temperature of the coffee will be:
[tex]\displaystyle \begin{aligned} \displaystyle T&=75e^{\ln({}^{13}\! /\!{}_{15})(4)}+25\\\\&\approx 67^\circ\text{C}\end{aligned}[/tex]
Hence, our answer is B.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.