Answered

Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The mass, m grams, of a radioactive substance, present at time t days after first being observed, is given by the formula m=24e^-0.02t. Find
(i) the value of m when t=30.
(ii) the value of t when the mass is half of its value at t=0.
(iii) the rate at which the mass is decreasing when t=50.


Sagot :

Answer:

(i) The value of m when t = 30 is 13.2

(ii) The value of t when the mass is half of its value at t=0 is 34.7

(iii) The rate of the mass when t=50 is -0.18            

Step-by-step explanation:

(i) The m value when t = 30 is:

[tex] m = 24e^{-0.02t} = 24e^{-0.02*30} = 13.2 [/tex]

Then, the value of m when t = 30 is 13.2

(ii) The value of the mass when t=0 is:

[tex] m_{0} = 24e^{-0.02t} = 24e^{-0.02*0} = 24 [/tex]    

Now, the value of t is:

[tex] ln(\frac{m_{0}/2}{24}) = -0.02t [/tex]

[tex] t = -\frac{ln(\frac{24}{2*24})}{0.02} = 34.7 [/tex]

Hence, the value of t when the mass is half of its value at t=0 is 34.7

(iii) Finally, the rate at which the mass is decreasing when t=50 is:

[tex] \frac{dm}{dt} = \frac{d}{dt}(24e^{-0.02t}) = 24(e^{-0.02t})*(-0.02) = -0.48*                            (e^{-0.02*50}) = -0.18 [/tex]

Therefore, the rate of the mass when t=50 is -0.18.

I hope it helps you!                  

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.