Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
A. 2
Step-by-step explanation:
[tex] \int_0^1 \: 5x \sqrt x \: dx \\ \\ = \int_0^1 \: 5x . \: {x}^{ \frac{1}{2} } \: dx \\ \\ = 5\int_0^1 \: {x}^{ \frac{3}{2} } \: dx \\ \\ = 5 \bigg( \frac{ {x}^{ \frac{3}{2} + 1 } }{ \frac{3}{2} + 1 } \bigg)_0^1\\ \\ = 5 \bigg( \frac{ {x}^{ \frac{5}{2} } }{ \frac{5}{2}} \bigg)_0^1 \\ \\ = 5 \times \frac{2}{5} \bigg({x}^{ \frac{5}{2} } \bigg)_0^1 \\ \\ = 2 \bigg( {1}^{ \frac{5}{2} } - {0}^{ \frac{5}{2} } \bigg) \\ \\ = 2(1 - 0) \\ \\ = 2[/tex]
Answer:
2 ( Option A )
Step-by-step explanation:
The given integral to us is ,
[tex]\longrightarrow \displaystyle \int_0^1 5x \sqrt{x}\ dx [/tex]
Here 5 is a constant so it can come out . So that,
[tex]\longrightarrow \displaystyle I = 5 \int_0^1 x \sqrt{x}\ dx [/tex]
Now we can write √x as ,
[tex]\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{\frac{1}{2}} \ dx [/tex]
Simplify ,
[tex]\longrightarrow I = 5 \displaystyle \int_0^1 x^{\frac{3}{2}}\ dx [/tex]
By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,
[tex]\longrightarrow I = 5 \bigg( \dfrac{2}{5} x^{\frac{5}{2}} \bigg] ^1_0 \bigg) [/tex]
On simplifying we will get ,
[tex]\longrightarrow \underline{\underline{ I = 2 }}[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.