Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
A. 2
Step-by-step explanation:
[tex] \int_0^1 \: 5x \sqrt x \: dx \\ \\ = \int_0^1 \: 5x . \: {x}^{ \frac{1}{2} } \: dx \\ \\ = 5\int_0^1 \: {x}^{ \frac{3}{2} } \: dx \\ \\ = 5 \bigg( \frac{ {x}^{ \frac{3}{2} + 1 } }{ \frac{3}{2} + 1 } \bigg)_0^1\\ \\ = 5 \bigg( \frac{ {x}^{ \frac{5}{2} } }{ \frac{5}{2}} \bigg)_0^1 \\ \\ = 5 \times \frac{2}{5} \bigg({x}^{ \frac{5}{2} } \bigg)_0^1 \\ \\ = 2 \bigg( {1}^{ \frac{5}{2} } - {0}^{ \frac{5}{2} } \bigg) \\ \\ = 2(1 - 0) \\ \\ = 2[/tex]
Answer:
2 ( Option A )
Step-by-step explanation:
The given integral to us is ,
[tex]\longrightarrow \displaystyle \int_0^1 5x \sqrt{x}\ dx [/tex]
Here 5 is a constant so it can come out . So that,
[tex]\longrightarrow \displaystyle I = 5 \int_0^1 x \sqrt{x}\ dx [/tex]
Now we can write √x as ,
[tex]\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{\frac{1}{2}} \ dx [/tex]
Simplify ,
[tex]\longrightarrow I = 5 \displaystyle \int_0^1 x^{\frac{3}{2}}\ dx [/tex]
By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,
[tex]\longrightarrow I = 5 \bigg( \dfrac{2}{5} x^{\frac{5}{2}} \bigg] ^1_0 \bigg) [/tex]
On simplifying we will get ,
[tex]\longrightarrow \underline{\underline{ I = 2 }}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.