Answered

Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

solve in attachment .​

Solve In Attachment class=

Sagot :

Answer:

2 ( Option A )

Step-by-step explanation:

The given integral to us is ,

[tex]\longrightarrow \displaystyle \int_0^1 5x \sqrt{x}\ dx [/tex]

Here 5 is a constant so it can come out . So that,

[tex]\longrightarrow \displaystyle I = 5 \int_0^1 x \sqrt{x}\ dx [/tex]

Now we can write √x as ,

[tex]\longrightarrow I = \displaystyle 5 \int_0^1 x . x^{\frac{1}{2}} \ dx [/tex]

Simplify ,

[tex]\longrightarrow I = 5 \displaystyle \int_0^1 x^{\frac{3}{2}}\ dx [/tex]

By Power rule , the integral of x^3/2 wrt x is , 2/5x^5/2 . Therefore ,

[tex]\longrightarrow I = 5 \bigg( \dfrac{2}{5} x^{\frac{5}{2}} \bigg] ^1_0 \bigg) [/tex]

On simplifying we will get ,

[tex]\longrightarrow \underline{\underline{ I = 2 }}[/tex]

Step-by-step explanation:

[tex]thank \: you[/tex]

View image spammingallowed