Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
The probability that Swallows will win the trophy is 0.8064
The probability that Rucks will win the trophy is 0.1936
Step-by-step explanation:
For each game, there are only two possible outcomes. Either the Swallows win, or they do not. The probability of them winning a game is independent of any other game, which means that the binomial probability distribution is used.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Probability the Swallows wins is 0.56
This means that [tex]p = 0.56[/tex]
2 games:
This means that [tex]n = 2[/tex]
The probability that Swallows will win the trophy is
Probability they win at least one game, so:
[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{2,0}.(0.56)^{0}.(0.44)^{2} = 0.1936[/tex]
Then
[tex]P(X \geq 1) = 1 - 0.1936 = 0.8064[/tex]
0.8064 = 80.64% probability the Swallows win the trophy and 0.1936 probability that the Rucks win the trophy.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.