Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
General Formulas and Concepts:
Algebra I
Coordinates (x, y)
Functions
Function Notation
Point-Slope Form: y - y₁ = m(x - x₁)
- x₁ - x coordinate
- y₁ - y coordinate
- m - slope
Pre-Calculus
- Unit Circle
Calculus
Derivatives
- The definition of a derivative is the slope of the tangent line
Derivative Notation
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sin(u)] = u'cos(u)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = sin(x)[/tex]
[tex]\displaystyle x = \frac{\pi}{4}[/tex]
Step 2: Differentiate
- Trig Derivative: [tex]\displaystyle y' = cos(x)[/tex]
Step 3: Find Tangent Slope
- Substitute in x [Derivative]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = cos \bigg( \frac{\pi}{4} \bigg)[/tex]
- Evaluate [Unit Circle]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]
Step 4: Find Tangent Equation
- Substitute in x [Function y]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = sin \bigg( \frac{\pi}{4} \bigg)[/tex]
- Evaluate [Unit Circle]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]
- Substitute in variables [Point-Slope Form]: [tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.