Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
[tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
General Formulas and Concepts:
Algebra I
Coordinates (x, y)
Functions
Function Notation
Point-Slope Form: y - y₁ = m(x - x₁)
- x₁ - x coordinate
- y₁ - y coordinate
- m - slope
Pre-Calculus
- Unit Circle
Calculus
Derivatives
- The definition of a derivative is the slope of the tangent line
Derivative Notation
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sin(u)] = u'cos(u)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = sin(x)[/tex]
[tex]\displaystyle x = \frac{\pi}{4}[/tex]
Step 2: Differentiate
- Trig Derivative: [tex]\displaystyle y' = cos(x)[/tex]
Step 3: Find Tangent Slope
- Substitute in x [Derivative]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = cos \bigg( \frac{\pi}{4} \bigg)[/tex]
- Evaluate [Unit Circle]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]
Step 4: Find Tangent Equation
- Substitute in x [Function y]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = sin \bigg( \frac{\pi}{4} \bigg)[/tex]
- Evaluate [Unit Circle]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]
- Substitute in variables [Point-Slope Form]: [tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.