Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

find k so that x-1 is a factor of x^3 - 3x^2 + kx - 1

Sagot :

Answer:

[tex]{ \bf {factor : { \tt{x - 1}}}} \\ x - 1 = 0 \\ x = 1 \\ { \tt{f(x) = {x}^{3} - {3x}^{2} + kx - 1}} \\ { \tt{f(1) : {(1)}^{3} - 3 {(1)}^{2} + k(1) - 1 = 0}} \\ { \tt{k - 3 = 0}} \\ { \tt{k = 3}}[/tex]

Answer:

k = 3

Step-by-step explanation:

If x-1 is a factor of x³ - 3x² + kx - 1 then value of x is 1.

f (x ) = x³ - 3x² + Kx - 1 , then

plug 1 as x in the expression.

  • f ( 1) = ( 1)³ - 3 ( 1)² + k (1) - 1 = 0

expand exponents

  • 1 - 3 + k - 1 = 0

combine like terms

  • -3 + k = 0

Add 3 to both side

  • k = 3