Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer: Approximately 72.69 meters
Step-by-step explanation:
- Antenna height = h
[tex]sin(42.3)=\frac{opposite}{hypotenuse} =\frac{h}{108} \\\\108*sin(42.3)=h\\\\h=72.685[/tex]
The height of the antenna by using the Pythagoras theorem is 72.68 meters.
What is trigonometry?
"Trigonometry is one of the branches of mathematics that deals with the relationship between the sides of a triangle (right triangle) with its angles".
For the given situation,
Length of guidewire = 108 meters
Angle of elevation = 42.3 degrees
Height of the antenna be 'h'.
By Pythagoras theorem,
[tex]Sine[/tex] θ = [tex]\frac{Perpendicular}{hypotenuse}[/tex]
On substituting the above values,
⇒ [tex]Sine 42.3 = \frac{h}{108}[/tex]
⇒ [tex]0.6730 =\frac{h}{108}[/tex]
⇒ [tex]h=0.6730[/tex] × [tex]108[/tex]
⇒ [tex]h= 72.68[/tex]
Hence we can conclude that the height of the antenna is 72.68 meters.
Learn more about trigonometry here
https://brainly.com/question/13971311
#SPJ2
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.