Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer: Approximately 72.69 meters
Step-by-step explanation:
- Antenna height = h
[tex]sin(42.3)=\frac{opposite}{hypotenuse} =\frac{h}{108} \\\\108*sin(42.3)=h\\\\h=72.685[/tex]

The height of the antenna by using the Pythagoras theorem is 72.68 meters.
What is trigonometry?
"Trigonometry is one of the branches of mathematics that deals with the relationship between the sides of a triangle (right triangle) with its angles".
For the given situation,
Length of guidewire = 108 meters
Angle of elevation = 42.3 degrees
Height of the antenna be 'h'.
By Pythagoras theorem,
[tex]Sine[/tex] θ = [tex]\frac{Perpendicular}{hypotenuse}[/tex]
On substituting the above values,
⇒ [tex]Sine 42.3 = \frac{h}{108}[/tex]
⇒ [tex]0.6730 =\frac{h}{108}[/tex]
⇒ [tex]h=0.6730[/tex] × [tex]108[/tex]
⇒ [tex]h= 72.68[/tex]
Hence we can conclude that the height of the antenna is 72.68 meters.
Learn more about trigonometry here
https://brainly.com/question/13971311
#SPJ2

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.