Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

An ellipse has a co-vertex at (–8, 9) and a foci at (4, 4). If the center of the ellipse is located below the given co-vertex, then what is the equation of the ellipse? Write in standard form. Guide question? 1) What are the coordinates of the center of the ellipse? 2) Is the ellipse horizontal or vertical?

Sagot :

DWRead

Answer:

Step-by-step explanation:

“the center of the ellipse is located below the given co-vertex”

Co-vertex and center are vertically aligned, so the ellipse is horizontal.

Equation for horizontal ellipse:

(x-h)²/a² + (y-k)²/b² = 1

with

a² ≥ b²

center (h,k)

vertices (h±a, k)

co-vertices (h, k±b)

foci (h±c,k), c² = a² -b²

One co-vertex is (-8,9), so h = -8.

One focus is (4,4), so k = 4.

Center (h,k) = (-8,4)

c = distance between center and focus = |-8 - 4| = 12

b = |9-k| = 5

a² = c² + b² = 169

(x+8)²/169 + (y-4)²/25 = 1

We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.