Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

An ellipse has a co-vertex at (–8, 9) and a foci at (4, 4). If the center of the ellipse is located below the given co-vertex, then what is the equation of the ellipse? Write in standard form. Guide question? 1) What are the coordinates of the center of the ellipse? 2) Is the ellipse horizontal or vertical?

Sagot :

DWRead

Answer:

Step-by-step explanation:

“the center of the ellipse is located below the given co-vertex”

Co-vertex and center are vertically aligned, so the ellipse is horizontal.

Equation for horizontal ellipse:

(x-h)²/a² + (y-k)²/b² = 1

with

a² ≥ b²

center (h,k)

vertices (h±a, k)

co-vertices (h, k±b)

foci (h±c,k), c² = a² -b²

One co-vertex is (-8,9), so h = -8.

One focus is (4,4), so k = 4.

Center (h,k) = (-8,4)

c = distance between center and focus = |-8 - 4| = 12

b = |9-k| = 5

a² = c² + b² = 169

(x+8)²/169 + (y-4)²/25 = 1