Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
He drove there at 60 mph, and he drove back at 36 mph.
Step-by-step explanation:
one way distance = d = 270 miles
average speed on way back = s
average speed on the way there = s + 24
time driving there = t
time driving back = 12 - t
average speed = distance/time
distance = speed * time
going there:
270 = (s + 24)t
270 = st + 24t
going back
270 = s(12 - t)
270 = 12s - st
We have a system of equations:
270 = st + 24t
270 = 12s - st
Solve the first equation for t.
t(s + 24) = 270
t = 270/(s + 24)
Substitute in the second equation.
270 = 12s - s[270/(s + 24)]
270 = 12s - 270s/(s + 24)
Multiply both sides by s + 24.
270s + 6480 = 12s^2 + 288s - 270s
12s^2 - 252s - 6480 = 0
Divide both sides by 12.
s^2 - 21s - 540 = 0
(s - 36)(s + 15) = 0
s = 36 or s = -15
The average speed cannot be negative, so we discard the solution s = -15.
s = 36
s + 24 = 60
Answer: He drove there at 60 mph, and he drove back at 36 mph.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.