Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
F = 0.414 N
Explanation:
Given that,
Magnetic flux density,[tex]B=3.6\times 10^{-2}\ T[/tex]
The length of the wire, l = 24 m
Current, I = 0.48 A
We need to find the force acting on the wire. The formula for the force is given by:
[tex]F=ILB[/tex]
Put all the values,
[tex]F=0.48\times 24\times 3.6\times 10^{-2}\\\\F=0.414\ N[/tex]
So, the force acting on the copper wire is equal to 0.414 N.
The magnetic force of the copper wire is 41.472 N.
Magnetic force of the copper wire
The magnetic force of the copper wire is calculated by applying the following equation.
F = BIL x sinθ
Where;
- θ is the inclination of the magnetic field
- I is the current
- L is the length of the wire
- B is the magnetic field strength = flux density
F = (3.6 x 10⁻²) x (48) x 24 x sin(90)
F = 41.472 N
Thus, the magnetic force of the copper wire is 41.472 N.
Learn more about magnetic force here: https://brainly.com/question/13277365
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.