Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
- Let the given points ( 3 , -1 ) and ( 8 , 9 ) be A and B respectively. Let A ( 3 , - 1 ) be ( x₁ , y₁ ) and B ( 8 , 9 ) be ( x₂ , y₂ ). Let the point P ( x , y ) divides the line segment of joining points A ( 3 , -1 ) and ( 8 , 9 ) in the ratio m : n. Let m be m₁ and n be m₂ We know that :
[tex] \large{ \tt{❁ \: USING \: INTERNAL \: SECTION \: FORMULA: }}[/tex]
[tex] \large{ \bf{✾ \: P(x \:, y \: ) = ( \frac{m_{1}x_{2} + m_{2}x_{1}}{m_{1} + m_{2}} \: ,\: \frac{m_{1}y_{2} + m_{2}y_{1}}{m_{1} + m_{2}}) }}[/tex]
[tex] \large{ \bf{⟹ \: ( \frac{8m + 3n}{m + n} , \: \frac{9m -n}{m + n}) }}[/tex]
- Since point P lies on the line x - y - 2 = 0 ,
[tex] \large{ \bf{ ⟼\frac{8m + 3n}{m + n} - \frac{9m - n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{8m + 3n - 9m + n}{m + n} - 2 = 0 }}[/tex]
[tex] \large{ \bf{⟼ \: \frac{4n - m}{ m + n} - 2 = 0 }}[/tex]
[tex] \large{⟼ \: \bf{ \frac{4n - m}{m + n }} = 2} [/tex]
[tex] \large{ \bf{⟼ \: 4n - m = 2m + 2n}}[/tex]
[tex] \large{ \bf{⟼ \: 4n -2 n = 2m + m}}[/tex]
[tex] \large{ \bf{⟼2n = 3m}}[/tex]
[tex] \large{ \bf{⟼ \: 3m = 2n}}[/tex]
[tex] \large{ \bf{⟼ \: \frac{m}{n} = \frac{2}{3} }}[/tex]
[tex] \boxed{ \large{ \bf{⟼ \: m : \: n = 2: \: }3}}[/tex]
- Hence , The required ratio is 2 : 3 .
-Hope I helped! Let me know if you have any questions regarding my answer and also notify me , if you need any other help! :)
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.