Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given:
For en exponential function f(a):
[tex]f(-3)=18[/tex]
[tex]f(1)=59[/tex]
To find:
The value of f(0).
Solution:
The general form of an exponential function is:
[tex]f(x)=ab^x[/tex] ...(i)
Where, a is the initial value and b is the growth/ decay factor.
We have, [tex]f(-3)=18[/tex]. Substitute [tex]x=-3,f(x)=18[/tex] in (i).
[tex]18=ab^{-3}[/tex] ...(ii)
We have, [tex]f(1)=59[/tex]. Substitute [tex]x=1,f(x)=59[/tex] in (i).
[tex]59=ab^{1}[/tex] ...(iii)
On dividing (iii) by (ii), we get
[tex]\dfrac{59}{18}=\dfrac{ab^{1}}{ab^{-3}}[/tex]
[tex]3.278=b^{1-(-3)}[/tex]
[tex]3.278=b^{4}[/tex]
[tex](3.278)^{\frac{1}{4}}=b[/tex]
[tex]1.346=b[/tex]
Substituting the value of b in (iii).
[tex]59=a(1.346)^1[/tex]
[tex]\dfrac{59}{1.346}=a[/tex]
[tex]43.83358=a[/tex]
[tex]a\approx 43.83[/tex]
The initial value of the function is 43.83. It means, [tex]f(0)=43.83[/tex].
Therefore, the value of f(0) is 43.83.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.