Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\displaystyle a=\frac{7}{2}\text{ or } 3.5[/tex]
Step-by-step explanation:
We have the two points (3a, 4) and (a, -3).
And we want to find the value of a such that the gradient of the line joining the two points is 1.
Recall that the gradient or slope of a line is given by the formula:
[tex]\displaystyle m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Where (x₁, y₁) is one point and (x₂, y₂) is the other.
Let (3a, 4) be (x₁, y₁) and (a, -3) be (x₂, y₂). Substitute:
[tex]\displaystyle m=\frac{-3-4}{a-3a}[/tex]
Simplify:
[tex]\displaystyle m=\frac{-7}{-2a}=\frac{7}{2a}[/tex]
We want to gradient to be one. Therefore, m = 1:
[tex]\displaystyle 1=\frac{7}{2a}[/tex]
Solve for a. Rewrite:
[tex]\displaystyle \frac{1}{1}=\frac{7}{2a}[/tex]
Cross-multiply:
[tex]2a=7[/tex]
Therefore:
[tex]\displaystyle a=\frac{7}{2}\text{ or } 3.5[/tex]
Answer:
[tex] \frac{7}{2} [/tex]
Step-by-step explanation:
Objective: Linear Equations and Advanced Thinking.
If a line connects two points (3a,4) and (a,-3) has a gradient of 1. This means that the slope formula has to be equal to 1
If we use the points to find the slope: we get
[tex] \frac{4 + 3}{3a - a} [/tex]
Notice how the numerator is 7, this means the denominator has to be 7. This means the denomiator must be 7.
[tex]3a - a = 7[/tex]
[tex]2a = 7[/tex]
[tex]a = \frac{7}{2} [/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.