At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the slope of a line parallel to a line that contains the points (9, -3) and (-3, 8).

Sagot :

Lanuel

Answer:

[tex] Slope, \ m = \frac {11}{-12} [/tex]

Explanation:

Given the following points;

Points on the x-axis (x1, x2) = (9, -3)

Points on the y-axis (y1, y2) = (-3, 8)

To find the slope of a line parallel to a line;

Mathematically, the slope of a line is given by the formula;

[tex] Slope, \ m = \frac {Change \; in \; y-axis}{Change \; in \; x-axis} [/tex]

[tex] Slope, \ m = \frac {y_{2} - y_{1}}{x_{2} - x_{1}} [/tex]

Substituting into the formula, we have;

[tex] Slope, \ m = \frac {8 - (-3)}{-3 - 9} [/tex]

[tex] Slope, \ m = \frac {8 + 3}{-3 - 9} [/tex]

[tex] Slope, \ m = \frac {11}{-12} [/tex]

Therefore, the slope of the parallel line is -11/12.