Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Find the slope of a line parallel to a line that contains the points (9, -3) and (-3, 8).

Sagot :

Lanuel

Answer:

[tex] Slope, \ m = \frac {11}{-12} [/tex]

Explanation:

Given the following points;

Points on the x-axis (x1, x2) = (9, -3)

Points on the y-axis (y1, y2) = (-3, 8)

To find the slope of a line parallel to a line;

Mathematically, the slope of a line is given by the formula;

[tex] Slope, \ m = \frac {Change \; in \; y-axis}{Change \; in \; x-axis} [/tex]

[tex] Slope, \ m = \frac {y_{2} - y_{1}}{x_{2} - x_{1}} [/tex]

Substituting into the formula, we have;

[tex] Slope, \ m = \frac {8 - (-3)}{-3 - 9} [/tex]

[tex] Slope, \ m = \frac {8 + 3}{-3 - 9} [/tex]

[tex] Slope, \ m = \frac {11}{-12} [/tex]

Therefore, the slope of the parallel line is -11/12.