Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
The 98% confidence interval for the mean usage in the March quarter of 2006, in kWh, was (333.87, 416.13).
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 30 - 1 = 29
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 29 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.98}{2} = 0.99[/tex]. So we have T = 2.462
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.462\frac{91.5}{\sqrt{30}} = 41.13[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 375 - 41.13 = 333.87 kWh
The upper end of the interval is the sample mean added to M. So it is 375 + 41.13 = 416.13 kWh
The 98% confidence interval for the mean usage in the March quarter of 2006, in kWh, was (333.87, 416.13).
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.