Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

The current price of ABC stock is $200. The standard deviation is 22.5 percent a year and the interest rate is 21 percent a year. A one-year call option has an exercise price of $180.00. Use Black-Scholes to value a call option on ABC.

Sagot :

Answer:

$55.4930

Explanation:

Use the following formula to calculate the value of the call option

Value of call option = ( [tex]S_{0}[/tex] x N([tex]d_1[/tex]) ) - (K x [tex]e^{-rt}[/tex] x N([tex]d_2[/tex]))

where

[tex]S_{0}[/tex] = current spot price = $200

K = strike price = $180

r = risk-free interest rate

t is the time to expiry in years

N ([tex]d_1[/tex]) = NORMSDIST [ (ln(S0 / K) + (r + σ2/2) x T) / σ√T ] = NORMSDIST [  ln(200 / 180) + (0.21 + (0.2252/2) x 1 / 0.225 x √1 ] = 0.9350

N ([tex]d_2[/tex]) = NORMSDIST [d1 - σ√T ] = NORMSDIST [ 0.9350 - 0.225 x √1 ] = 0.9013

Placing values in the formula

Value of call option = ( $200 x 0.9350 ) - ($180 x [tex]e^{-(0.21)(1)}[/tex] x 0.9013)

Value of call option = $55.4930

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.