Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Explanation:
Given:
diameter of the wire, [tex]d=3.9~mm[/tex]
current in the wire, [tex]i=1.3~mA[/tex]
a)
Current density:
[tex]\o=\frac{i}{\pi.d^2/4}[/tex]
[tex]\o=\frac{1.3}{\pi\times 3.9^2/4}[/tex]
[tex]\o=0.109~mA/mm^2[/tex]
b)
Given drift velocity, [tex]v_d=1\times 10^{-2} ~cm/s[/tex]
From the formula:
[tex]v_d=\frac{i}{n.e.A}[/tex]
where:
n = charge density (here the charge carriers are electron)
q = quantity of charge on a carrier
A = cross-sectional area of the conductor
[tex]n=\frac{i}{v_d.q.\pi d^2/4}[/tex]
[tex]n=\frac{1.3\times 10^{-3}}{1\times10^{-2}\times(1.6\times 10^{-19})\times\pi\times0.39^2/4 }[/tex]
[tex]n=6.80\times 10^{18}~cm^{-3}[/tex]
c)
Given conductivity of wire, [tex]G=5.5\times 10^{6}~\Omega^{-1}.m^{-1}[/tex]
Using formula of average time between collision:
[tex]\tau=\frac{m.G}{q^2n}[/tex]
here:
m = mass of the a carrier
[tex]\tau=\frac{9.11\times 10^{-31}\times 5.5\times 10^6}{(1.6\times 10^{-19})^2\times 6.80\times 10^{12}}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.