Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Use the binomial series to expand the function as a power series. Find the radius of convergence.

x/ â 9+ x^2


Sagot :

Answer:

Step-by-step explanation:

The given function is:

[tex]f(x) = \dfrac{x}{\sqrt{9+x^2}}[/tex]

Using the binomial series:

[tex]= x(9+x^2)^{-1/2} \\ \\ = x *9^{-1/2}(1+\dfrac{x^2}{9})^{-1/2} \\ \\ = \dfrac{x}{3}(1+ \dfrac{x^2}{9})^{-1/2}[/tex]

[tex]= \dfrac{x}{3} \sum \limits ^{\alpha }_{n=0}(^{-\frac{1}{2}}_n)(\dfrac{x^2}{9})^n[/tex]

[tex]\implies \dfrac{x}{3}\Bigg [ 1 + (-\dfrac{1}{2})*(\dfrac{x^2}{9})+ \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1)}{2!}(\dfrac{x^2}{9}) ^2 + \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1) (-\dfrac{1}{2}-2)}{3!} ) (\dfrac{x^2}{9}) ^3+ ... \Bigg ][/tex]

[tex]= \dfrac{x}{3}\Bigg [ 1 - \dfrac{x^2}{18}+ \dfrac{3}{5832}*\dfrac{x^4}{1}-\dfrac{15}{34992}x^6+... \Bigg ][/tex]

[tex]\mathbf{= \dfrac{x}{3}- \dfrac{x^3}{54}+ \dfrac{1}{5832}x^4 - \dfrac{5}{34992}x^7 + ...}[/tex]

To compute the radius of convergence:

[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (1+\dfrac{x^2}{9})^{-1/2}[/tex]

[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3*9^n}*x^{2n} \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3^{2n+1}}*x^{2n}[/tex]

Suppose [tex]a_n = (^{-1/2}_{n})*\dfrac{1}{3^{2n+1}}*x^{2n}[/tex]

Then, rewriting the equation above as:

[tex]a_{n+1} = (^{-1/2}_{n+1})*\dfrac{1}{3^{2n+3}}*x^{2n+2}[/tex]

As such;

[tex]\lim_{n \to x} \Big| \dfrac{a_n+1}{a_n} \Big| = \lim_{n \to x} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2n+2}}{3^{2n+3}} }{(^{-1/2}_{n} )\dfrac{x^2}{3^{2n+1}}}} \Bigg |[/tex]

[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2}}{3^{2}} }{(^{-1/2}_{_n} )} \Bigg |[/tex]

[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{\dfrac{(-1/2)!}{(-1/2-n -1)!(n+1)!}*\dfrac{x^2}{9} }{ \dfrac{(-1/2!)}{(-1/2-n)!(n!)} } \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)! (n!) }{(-1/2 -n-1)! (n+1)! } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n) (-1/2 -n-1)! \ n! }{(-1/2 -n-1)! (n+1) n! } *\dfrac{x^2}{9} \Bigg|[/tex]

[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)}{n+1 } *\dfrac{x^2}{9} \Bigg|[/tex]

[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{n( -\dfrac{1}{2n -1 } ) }{n(1+\dfrac{1}{n}) } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \Big| \dfrac{x^2}{9} \Big| \lim_{n \to \alpha} \Big | \dfrac{-\dfrac{1}{2n} -1}{1+ \dfrac{1}{n}} \Big| \\ \\ \implies | \dfrac{x^2}{9}| |\dfrac{0-1}{1}|[/tex]

[tex]\implies | \dfrac{x^2}{9}|[/tex]

However, the series converges if and only if:

[tex]| \dfrac{x^2}{9}| < 1[/tex]

[tex]\dfrac{|x^2|}{9} < 1[/tex]

[tex]={|x^2|}< 9 \\ \\ ={|x|} < \sqrt{9} \\ \\ = \mathbf{{|x|} < 3}[/tex]

Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.