Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Step-by-step explanation:
The given function is:
[tex]f(x) = \dfrac{x}{\sqrt{9+x^2}}[/tex]
Using the binomial series:
[tex]= x(9+x^2)^{-1/2} \\ \\ = x *9^{-1/2}(1+\dfrac{x^2}{9})^{-1/2} \\ \\ = \dfrac{x}{3}(1+ \dfrac{x^2}{9})^{-1/2}[/tex]
[tex]= \dfrac{x}{3} \sum \limits ^{\alpha }_{n=0}(^{-\frac{1}{2}}_n)(\dfrac{x^2}{9})^n[/tex]
[tex]\implies \dfrac{x}{3}\Bigg [ 1 + (-\dfrac{1}{2})*(\dfrac{x^2}{9})+ \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1)}{2!}(\dfrac{x^2}{9}) ^2 + \dfrac{(-\dfrac{1}{2})(-\dfrac{1}{2}-1) (-\dfrac{1}{2}-2)}{3!} ) (\dfrac{x^2}{9}) ^3+ ... \Bigg ][/tex]
[tex]= \dfrac{x}{3}\Bigg [ 1 - \dfrac{x^2}{18}+ \dfrac{3}{5832}*\dfrac{x^4}{1}-\dfrac{15}{34992}x^6+... \Bigg ][/tex]
[tex]\mathbf{= \dfrac{x}{3}- \dfrac{x^3}{54}+ \dfrac{1}{5832}x^4 - \dfrac{5}{34992}x^7 + ...}[/tex]
To compute the radius of convergence:
[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (1+\dfrac{x^2}{9})^{-1/2}[/tex]
[tex]f(x) = \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \dfrac{\lambda }{3} \sum \limits ^{\alpha }_{n=0} (^{-1/2} _n ) (\dfrac{x^2}{9})^n \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3*9^n}*x^{2n} \\ \\ \implies \sum \limits ^{\alpha}_{n=0} (^{-1/2} _n ) \dfrac{1}{3^{2n+1}}*x^{2n}[/tex]
Suppose [tex]a_n = (^{-1/2}_{n})*\dfrac{1}{3^{2n+1}}*x^{2n}[/tex]
Then, rewriting the equation above as:
[tex]a_{n+1} = (^{-1/2}_{n+1})*\dfrac{1}{3^{2n+3}}*x^{2n+2}[/tex]
As such;
[tex]\lim_{n \to x} \Big| \dfrac{a_n+1}{a_n} \Big| = \lim_{n \to x} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2n+2}}{3^{2n+3}} }{(^{-1/2}_{n} )\dfrac{x^2}{3^{2n+1}}}} \Bigg |[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{ (^{-1/2}_{n+1}) \dfrac{x^{2}}{3^{2}} }{(^{-1/2}_{_n} )} \Bigg |[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{\dfrac{(-1/2)!}{(-1/2-n -1)!(n+1)!}*\dfrac{x^2}{9} }{ \dfrac{(-1/2!)}{(-1/2-n)!(n!)} } \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)! (n!) }{(-1/2 -n-1)! (n+1)! } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n) (-1/2 -n-1)! \ n! }{(-1/2 -n-1)! (n+1) n! } *\dfrac{x^2}{9} \Bigg|[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{(-1/2 -n)}{n+1 } *\dfrac{x^2}{9} \Bigg|[/tex]
[tex]\implies \lim_{n \to \alpha} \Bigg | \dfrac{n( -\dfrac{1}{2n -1 } ) }{n(1+\dfrac{1}{n}) } *\dfrac{x^2}{9} \Bigg| \\ \\ \\ \implies \Big| \dfrac{x^2}{9} \Big| \lim_{n \to \alpha} \Big | \dfrac{-\dfrac{1}{2n} -1}{1+ \dfrac{1}{n}} \Big| \\ \\ \implies | \dfrac{x^2}{9}| |\dfrac{0-1}{1}|[/tex]
[tex]\implies | \dfrac{x^2}{9}|[/tex]
However, the series converges if and only if:
[tex]| \dfrac{x^2}{9}| < 1[/tex]
∴
[tex]\dfrac{|x^2|}{9} < 1[/tex]
[tex]={|x^2|}< 9 \\ \\ ={|x|} < \sqrt{9} \\ \\ = \mathbf{{|x|} < 3}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.