Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a.

f(x)= 7x e^x, a= 0


Sagot :

leena

Hi there!

[tex]\large\boxed{p(x) = 7x + 7x^2 + \frac{7}{2}x^3 + \frac{7}{6}x^4}[/tex]

Recall a Taylor series centered at x = 0:

[tex]p(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2}x^{2} + \frac{f'''(0)}{3!}x^{3} + ...+ \frac{f^n}{n!}x^n[/tex]

Begin by finding the derivatives and evaluate at x = 0:

f(0) = 7(0)e⁰ = 0

f'(x) = 7eˣ + 7xeˣ   f'(0) = 7e⁰ + 7(0)e⁰ = 7

f''(x) = 7eˣ + 7eˣ + 7xeˣ  f''(0) = 7(1) + 7(1) + 0 = 14

f'''(x) = 7eˣ + 7eˣ + 7eˣ + 7xeˣ    f'''(0) = 21

f⁴(x) = 7eˣ + 7eˣ + 7eˣ + 7eˣ + 7xeˣ   f⁴(0) = 28

Now that we calculated 4 non-zero terms, we can write the Taylor series:

[tex]p(x) = 0 + 7x + \frac{14}{2}x^2 + \frac{21}{3!}x^3 + \frac{28}{4!}x^4[/tex]

Simplify:

[tex]p(x) = 7x + 7x^2 + \frac{7}{2}x^3 + \frac{7}{6}x^4[/tex]

Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.