Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Four toy racecars are racing along a circular race track. The cars start at the 3-o'clock position and travel CCW along the track. Car A is constantly 2 feet from the center of the race track and travels at a constant speed. The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Required:
How many radians θ does car A sweep out in t seconds?


Sagot :

Answer:

in t seconds, Car A sweep out t radian { i.e θ = t radian }

Explanation:

Given the data in the question;

4 toy racecars are racing along a circular race track.

They all start at 3 o'clock position and moved CCW

Car A is constantly 2 feet from the center of the race track and moves at a constant speed

so maximum distance from the center = 2 ft

The angle Car A sweeps out increases at a constant rate of 1 radian per second.

Rate of change of angle = dθ/dt = 1

Now,

since dθ/dt = 1

Hence θ = t + C

where C is the constant of integration

so at t = 0, θ = 0, the value of C will be 0.

Hence, θ = t radian

Therefore, in t seconds, Car A sweep out t radian { i.e θ = t radian }

Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.