Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]\frac{dV}{dt}=21.21cm^3/min[/tex]
Explanation:
We are given that
[tex]PV^{1.4}=C[/tex]
Where C=Constant
[tex]\frac{dP}{dt}=-7KPa/minute[/tex]
V=420 cubic cm and P=99KPa
We have to find the rate at which the volume increasing at this instant.
Differentiate w.r.t t
[tex]V^{1.4}\frac{dP}{dt}+1.4V^{0.4}P\frac{dV}{dt}=0[/tex]
Substitute the values
[tex](420)^{1.4}\times (-7)+1.4(420)^{0.4}(99)\frac{dV}{dt}=0[/tex]
[tex]1.4(420)^{0.4}(99)\frac{dV}{dt}=(420)^{1.4}\times (7)[/tex]
[tex]\frac{dV}{dt}=\frac{(420)^{1.4}\times (7)}{1.4(420)^{0.4}(99)}[/tex]
[tex]\frac{dV}{dt}=21.21cm^3/min[/tex]
Answer:
[tex]\dot V=2786.52~cm^3/min[/tex]
Explanation:
Given:
initial pressure during adiabatic expansion of air, [tex]P_1=99~kPa[/tex]
initial volume during the process, [tex]V_1=420~cm^3[/tex]
The adiabatic process is governed by the relation [tex]PV^{1.4}=C[/tex] ; where C is a constant.
Rate of decrease in pressure, [tex]\dot P=7~kPa/min[/tex]
Then the rate of change in volume, [tex]\dot V[/tex] can be determined as:
[tex]P_1.V_1^{1.4}=\dot P.\dot V^{1.4}[/tex]
[tex]99\times 420^{1.4}=7\times V^{1.4}[/tex]
[tex]\dot V=2786.52~cm^3/min[/tex]
[tex]\because P\propto\frac{1}{V}[/tex]
[tex]\therefore[/tex] The rate of change in volume will be increasing.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.