Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV1.4=C where C is a constant. Suppose that at a certain instant the volume is 420 cubic centimeters and the pressure is 99 kPa and is decreasing at a rate of 7 kPa/minute. At what rate in cubic centimeters per minute is the volume increasing at this instant?

Sagot :

Answer:

[tex]\frac{dV}{dt}=21.21cm^3/min[/tex]

Explanation:

We are given that

[tex]PV^{1.4}=C[/tex]

Where C=Constant

[tex]\frac{dP}{dt}=-7KPa/minute[/tex]

V=420 cubic cm and P=99KPa

We have to find the rate at which the  volume increasing at this instant.

Differentiate w.r.t t

[tex]V^{1.4}\frac{dP}{dt}+1.4V^{0.4}P\frac{dV}{dt}=0[/tex]

Substitute the values

[tex](420)^{1.4}\times (-7)+1.4(420)^{0.4}(99)\frac{dV}{dt}=0[/tex]

[tex]1.4(420)^{0.4}(99)\frac{dV}{dt}=(420)^{1.4}\times (7)[/tex]

[tex]\frac{dV}{dt}=\frac{(420)^{1.4}\times (7)}{1.4(420)^{0.4}(99)}[/tex]

[tex]\frac{dV}{dt}=21.21cm^3/min[/tex]

Answer:

[tex]\dot V=2786.52~cm^3/min[/tex]

Explanation:

Given:

initial pressure during adiabatic expansion of air, [tex]P_1=99~kPa[/tex]

initial volume during the process, [tex]V_1=420~cm^3[/tex]

The adiabatic process is governed by the relation [tex]PV^{1.4}=C[/tex] ; where C is a constant.

Rate of decrease in pressure, [tex]\dot P=7~kPa/min[/tex]

Then the rate of change in volume, [tex]\dot V[/tex] can be determined as:

[tex]P_1.V_1^{1.4}=\dot P.\dot V^{1.4}[/tex]

[tex]99\times 420^{1.4}=7\times V^{1.4}[/tex]

[tex]\dot V=2786.52~cm^3/min[/tex]

[tex]\because P\propto\frac{1}{V}[/tex]

[tex]\therefore[/tex] The rate of change in volume will be increasing.