Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
0.7671 = 76.71% probability that he was taught by method A
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Person learned Spanish successfully.
Event B: Method A was used.
Probability of a person learning Spanish successfully:
70% of 80%(using method A)
85% of 20%(using method B)
So
[tex]P(A) = 0.7*0.8 + 0.85*0.2 = 0.73[/tex]
Probability of a person learning Spanish successfully and using method A:
70% of 80%, so:
[tex]P(A \cap B) = 0.7*0.8 = 0.56[/tex]
What is the probability that he was taught by method A?
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{0.56}{0.73} = 0.7671[/tex]
0.7671 = 76.71% probability that he was taught by method A
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.