Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Ethylene glycol flows at 0.01 kg/s through a 3-mm diameter, thin-walled tube. The tube is coiled and submerged in well-stirred water bath maintained at 25°C. If the fluid enters the tube at 85°C, what heat rate and tube length are required for the fluid to leave at 35°C?

Sagot :

Answer:

heat rate= 1281W

length = 15.8m

Explanation:

we have this data to answer this question with

Tmi = 85 degrees

Tmo = 35 degrees

Ts = 25 dgrees

flow rate = 25 degrees

using engine oil property from table a-5

Tm = Tmo - TMi/2 = 333k

u =0.522x10⁻²

k = 0.26

pr = 51.3

cp = 2562 J/kg.k

mcp(Tmo-Tmi) =

0.01 x 2562(35-85)

= 1281 W

we find the change in Tim

= [(35-25)-(85-25)]/ln[(35-25)/(85-25)]

= -50/ln0.167

= -50/-1.78976

= 27.9°c

we finf the required reynold number

4x0.01/πx0.003x0.522x10⁻²

= 0.04/0.00004921

= 812.8

= 813

we find approximate correlation

NuD = hd/k

NuD = 3.66

3.66 = 0.003D/0.26

cross multiply

0.003D = 3.66x0.26

D = 3.66x0.26/0.003

= 317.2

As = 1281/317x27.9

= 0.145

As = πDL

L = As/πD

= 0.145/π0.003

= 0.145/0.009429

L = 15.378