Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Solution :
Given :
[tex]$H(S) =\frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
Transfer function, [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
[tex]$Y(S) \left(S^2+\frac{10}{3}S+1\right) = (2S-2) \times (S)$[/tex]
[tex]$S^2Y(S) + \frac{10}{3}(SY(S)) + Y(S) = 2(S \times (S)) - 2 \times (S)$[/tex]
Apply Inverse Laplace Transforms,
[tex]$\frac{d^2y(t)}{dt^2} + \frac{10}{3} \frac{dy(t)}{dt} + y(t)=2 \frac{dx(t)}{dt} - 2x(t)$[/tex]
The above equation represents the differential equation of transfer function.
Given : [tex]$x(t)=e^{-t} u(t) \Rightarrow X(S) = \frac{1}{S+1}$[/tex]
We have : [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
[tex]$Y(S) = X(S) \times \frac{6S-6}{3S^2+10 S + 3} = \frac{6S-6}{(S+1)(3S+1)(S+3)}$[/tex]
[tex]$Y(S) = \frac{A}{S+1}+\frac{B}{3S+1} + \frac{C}{S+3}[/tex]
[tex]$A = Lt_{S \to -1} (S+1)Y(S)=\frac{6S-6}{(3S+1)(S+3)} = \frac{-6-6}{(-3+1)(-1+3)} = 3$[/tex]
[tex]$B = Lt_{S \to -1/3} (3S+1)Y(S)=\frac{6S-6}{(S+1)(S+3)} = \frac{-6/3-6}{(1/3+1)(-1/3+3)} = \frac{-9}{2}$[/tex]
[tex]$C = Lt_{S \to -3} (S+3)Y(S)=\frac{6S-6}{(S+1)(3S+1)} = \frac{-18-6}{(-3+1)(-9+1)} = \frac{-3}{2}$[/tex]
So,
[tex]$Y(S) = \frac{3}{S+1} - \frac{9/2}{3S+1} - \frac{3/2}{S+3}$[/tex]
[tex]$=\frac{3}{S+1} - \frac{3/2}{S+1/3} - \frac{3/2}{S+3}$[/tex]
Applying Inverse Laplace Transform,
[tex]$y(t) = 3e^{-t}u(t)-\frac{3}{2}e^{-t/3}u(t) - \frac{3}{2}e^{-3t} u(t)$[/tex]
[tex]$=\frac{-3}{2}e^{-\frac{1}{3}t}u(t) + \frac{3}{1}e^{-t}u(t)-\frac{3}{2}e^{-3t} u(t)$[/tex]
where, a = 2
b = 1
c= 2
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.