Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Explanation:
The energy for an isothermal expansion can be computed as:
[tex]\mathsf{Q_H =nRTIn (\dfrac{V_b}{V_a})}[/tex] --- (1)
However, we are being told that the volume of the gas is twice itself when undergoing adiabatic expansion. This implies that:
[tex]V_b = 2V_a[/tex]
Equation (1) can be written as:
[tex]\mathtt{Q_H = nRT_H In (2)}[/tex]
Also, in a Carnot engine, the efficiency can be computed as:
[tex]\mathtt{e = 1 - \dfrac{T_L}{T_H}}[/tex]
[tex]e = \dfrac{T_H-T_L}{T_H}[/tex]
In addition to that, for any heat engine, the efficiency e =[tex]\dfrac{W}{Q_H}[/tex]
relating the above two equations together, we have:
[tex]\dfrac{T_H-T_L}{T_H} = \dfrac{W}{Q_H}[/tex]
Making the work done (W) the subject:
[tex]W = Q_H \Big(\dfrac{T_H-T_L}{T_H} \Big)[/tex]
From equation (1):
[tex]\mathsf{W = nRT_HIn(2) \Big(\dfrac{T_H-T_L}{T_H} \Big)}[/tex]
[tex]\mathsf{W = nRIn(2) \Big(T_H-T_L} \Big)}[/tex]
If we consider the adiabatic expansion as well:
[tex]PV^y[/tex] = constant
i.e.
[tex]P_bV_b^y = P_cV_c^y[/tex]
From ideal gas PV = nRT
we can have:
[tex]\dfrac{nRT_H}{V_b}(V_b^y)= \dfrac{nRT_L}{V_c}(V_c^y)[/tex]
[tex]T_H = T_L \Big(\dfrac{V_c}{V_b}\Big)^{y-1}[/tex]
From the question, let us recall aw we are being informed that:
If the volumes changes by a factor = 5.7
Then, it implies that:
[tex]\Big(\dfrac{V_c}{V_b}\Big) = 5.7[/tex]
∴
[tex]T_H = T_L (5.7)^{y-1}[/tex]
In an ideal monoatomic gas [tex]\gamma = 1.6[/tex]
As such:
[tex]T_H = T_L (5.7)^{1.6-1}[/tex]
[tex]T_H = T_L (5.7)^{0.67}[/tex]
Replacing the value of [tex]T_H = T_L (5.7)^{0.67}[/tex] into equation [tex]\mathsf{W = nRIn(2) \Big(T_H-T_L} \Big)}[/tex]
[tex]\mathsf{W = nRT_L In(2) (5.7 ^{0.67 }-1}})[/tex]
From in the question:
W = 930 J and the moles = 1.90
using 8.314 as constant
Then:
[tex]\mathsf{930 = (1.90)(8.314)T_L In(2) (5.7 ^{0.67 }-1}})[/tex]
[tex]\mathsf{930 = 15.7966\times 1.5315 (T_L )})[/tex]
[tex]\mathsf{T_L= \dfrac{930 }{15.7966\times 1.5315}}[/tex]
[tex]\mathbf{T_L \simeq = 39 \ K}[/tex]
From [tex]T_H = T_L (5.7)^{0.67}[/tex]
[tex]\mathsf{T_H = 39 (5.7)^{0.67}}[/tex]
[tex]\mathbf{T_H \simeq 125K}[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.