At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Explanation:
The energy for an isothermal expansion can be computed as:
[tex]\mathsf{Q_H =nRTIn (\dfrac{V_b}{V_a})}[/tex] --- (1)
However, we are being told that the volume of the gas is twice itself when undergoing adiabatic expansion. This implies that:
[tex]V_b = 2V_a[/tex]
Equation (1) can be written as:
[tex]\mathtt{Q_H = nRT_H In (2)}[/tex]
Also, in a Carnot engine, the efficiency can be computed as:
[tex]\mathtt{e = 1 - \dfrac{T_L}{T_H}}[/tex]
[tex]e = \dfrac{T_H-T_L}{T_H}[/tex]
In addition to that, for any heat engine, the efficiency e =[tex]\dfrac{W}{Q_H}[/tex]
relating the above two equations together, we have:
[tex]\dfrac{T_H-T_L}{T_H} = \dfrac{W}{Q_H}[/tex]
Making the work done (W) the subject:
[tex]W = Q_H \Big(\dfrac{T_H-T_L}{T_H} \Big)[/tex]
From equation (1):
[tex]\mathsf{W = nRT_HIn(2) \Big(\dfrac{T_H-T_L}{T_H} \Big)}[/tex]
[tex]\mathsf{W = nRIn(2) \Big(T_H-T_L} \Big)}[/tex]
If we consider the adiabatic expansion as well:
[tex]PV^y[/tex] = constant
i.e.
[tex]P_bV_b^y = P_cV_c^y[/tex]
From ideal gas PV = nRT
we can have:
[tex]\dfrac{nRT_H}{V_b}(V_b^y)= \dfrac{nRT_L}{V_c}(V_c^y)[/tex]
[tex]T_H = T_L \Big(\dfrac{V_c}{V_b}\Big)^{y-1}[/tex]
From the question, let us recall aw we are being informed that:
If the volumes changes by a factor = 5.7
Then, it implies that:
[tex]\Big(\dfrac{V_c}{V_b}\Big) = 5.7[/tex]
∴
[tex]T_H = T_L (5.7)^{y-1}[/tex]
In an ideal monoatomic gas [tex]\gamma = 1.6[/tex]
As such:
[tex]T_H = T_L (5.7)^{1.6-1}[/tex]
[tex]T_H = T_L (5.7)^{0.67}[/tex]
Replacing the value of [tex]T_H = T_L (5.7)^{0.67}[/tex] into equation [tex]\mathsf{W = nRIn(2) \Big(T_H-T_L} \Big)}[/tex]
[tex]\mathsf{W = nRT_L In(2) (5.7 ^{0.67 }-1}})[/tex]
From in the question:
W = 930 J and the moles = 1.90
using 8.314 as constant
Then:
[tex]\mathsf{930 = (1.90)(8.314)T_L In(2) (5.7 ^{0.67 }-1}})[/tex]
[tex]\mathsf{930 = 15.7966\times 1.5315 (T_L )})[/tex]
[tex]\mathsf{T_L= \dfrac{930 }{15.7966\times 1.5315}}[/tex]
[tex]\mathbf{T_L \simeq = 39 \ K}[/tex]
From [tex]T_H = T_L (5.7)^{0.67}[/tex]
[tex]\mathsf{T_H = 39 (5.7)^{0.67}}[/tex]
[tex]\mathbf{T_H \simeq 125K}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.