Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Step-by-step explanation:
We will work in the y-dimension only here. What we need to remember is that acceleration in this dimension is -9.8 m/s/s and that when the projectile reaches its max height, it is here that the final velocity = 0. Another thing we have to remember is that an object reaches its max height exactly halfway through its travels. Putting all of that together, we will solve for t using the following equation.
[tex]v=v_0+at[/tex]
BUT we do not have the upwards velocity of the projectile, we only have the "blanket" velocity. Initial velocity is different in both the x and y dimension. We have formulas to find the initial velocity having been given the "blanket" (or generic) velocity and the angle of inclination. Since we are only working in the y dimension, the formula is
[tex]v_{0y}=V_0sin\theta[/tex] so solving for this initial velocity specific to the y dimension:
[tex]v_{0y}=35sin(35)[/tex] so
[tex]v_{0y}=[/tex] 2.0 × 10¹ m/s
NOW we can fill in our equation from above:
0 = 2.0 × 10¹ + (-9.8)t and
-2.0 × 10¹ = -9.8t so
t = 2.0 seconds
This is how long it takes for the projectile to reach its max height. It will then fall back down to the ground for a total time of 4.0 seconds.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.