Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

what is the slope of the line perpendicular to the line through the points (-1,6) and (3,-4)

Sagot :

Answer:

The slope of the perpendicular line is 2/5.

Step-by-step explanation:

We want to find the slope of the line that is perpendicular to the line that passes through the points (-1, 6) and (3, -4).

Recall that the slopes of perpendicular lines are negative reciprocals of each other.

Find the slope of the original line:

[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{(-4)-(6)}{(3)-(-1)}=\frac{-10}{4}=-\frac{5}{2}[/tex]

The slope of the perpendicular line will be its negative reciprocal.

Thus, the slope of the perpendicular line is 2/5.

Answer:

The slope of the line perpendicular to the line through the points (-1,6) and (3,-4) is -5/2.

Step-by-step explanation:

We have to find the slope of the line perpendicular to the line through the points (-1,6) and (3,-4).

using the formula;-

m = (y²-y¹) / (x²-x¹)

Where,

  • m = slope
  • ( y² - y¹) = ( -4 -6 )
  • ( x² - x¹) = ( 3 - 1)

plug the value and simplify.

m = ( (-4 ) - 6)/(3 - (- 1)

m = - 10 / 4

m = - 5/2

Hence, The slope of the line perpendicular to the line through the points (-1,6) and (3,-4) is -5/2.

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.