Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
In a product like:
a*b = 0
says that one of the two terms (or both) must be zero.
Here we have our equation:
x^2 + 12 = 7x
x^2 + 12 - 7x = 0
Let's try to find an equation like:
(x - a)*(x - b) such that:
(x - a)*(x - b) = x^2 + 12 - 7x
we get:
x^2 - a*x - b*x -a*-b = x^2 - 7x + 12
subtracting x^2 in both sides we get:
-(a + b)*x + a*b = -7x + 12
from this, we must have:
-(a + b) = -7
a*b = 12
from the first one, we can see that both a and b must be positive.
Then we only care for the option with positive values, which is x =3 or x = 4
replacing these in both equations, we get:
-(3 + 4) = -7
3*4 = 12
Both of these equations are true, then we can write our quadratic equation as:
(x - 3)*(x - 4) = x^2 + 12 - 7x
The correct option is the last one.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.