Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
A 180° rotation of then a dilation by a scale factor of one-third
Step-by-step explanation:
The coordinates of the vertices of ΔABC are;
A(-9, 3), B(-9, 6), and C(0, 3)
The coordinates of the vertices of ΔA'B'C' are;
A'(3, -1), B'(3, -2), and C'(0, -1)
We note that for a 180° rotation transformation about the origin, we get;
Coordinates of preimage = (x, y)
Coordinates of image after 180° rotation about the origin = (-x, -y)
Therefore, a 180° rotation of ΔABC about the origin, would give ΔA''B''C'' as follows;
A(-9, 3), B(-9, 6), and C(0, 3) = A''(9, -3), B''(9, -6), and C''(0, -3)
The formula for a dilation of a point about the origin is given as follows;
[tex]D_{O, \, k} (x, \, y) = (k\cdot x, \, k\cdot y)[/tex]
Where;
k =The scale factor = 1/3, (one-third) we have;
A dilation of ΔA''B''C'', by a scale factor of 1/3, we get ΔA'B'C' as follows;
[tex]D_{O, \, \frac{1}{3} } A''(9, \, -3) = A'(\frac{1}{3} \times 9, \, \frac{1}{3} \times -3) = A'(3, -1)[/tex]
[tex]D_{O, \, \frac{1}{3} } B''(9, \, -6) = B'(\frac{1}{3} \times 9, \, \frac{1}{3} \times -6) = A'(3, -2)[/tex]
[tex]D_{O, \, \frac{1}{3} } C''(0, \, -3) = C'(\frac{1}{3} \times 0, \, \frac{1}{3} \times -3) = C'(0, -1)[/tex]
The coordinates of the vertices of ΔA'B'C' are A'(3, -1), B'(3, -2), and C'(0, -1), which is the same as the required coordinates of the image;
Therefore, the transformation that can be performed to show that ΔABC and ΔA'B'C' are similar are rotating ΔABC by 180° then a dilating the image derived after rotation by a scale factor of one-third (1/3) we get ΔA'B'C'.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.