At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
(a) The optimum banking Decreases
(b) The optimum banking Increases
(c) The optimum banking is approximately 86.88°
Explanation:
(a) The equation of motion on a banked road is given as follows;
[tex]v = \sqrt{R \cdot g \times \left(\dfrac{tan (\theta) + \mu}{1 - \mu \cdot tan (\theta) }\right) }[/tex]
For no friction, we have;
v = √(R·g·tan(θ))
Where;
R₁ = The radius of the road
g = The acceleration due to gravity ≈ 9.81 m/s² = Constant
θ₁ = The bank angle
μ = The coefficient pf friction = Constant
v = The vehicle's speed
If the radius doubles, for no friction, we have;
v² = R·g·(tan(θ))
tan(θ) = v²/(R·g)
Therefore, when the radius doubles, tan(θ) becomes smaller and therefore, the optimum banking angle θ decreases (becomes smaller)
(b) When the speed doubles, we have;
v₁ = 2·v
∴ tan(θ₁) = (v₁)²/(R·g) = 4·(v)²/(R·g) = 4·tan(θ)
When the speed doubles, tan(θ) increases and therefore, the optimum banking angle θ increases increases
(c) The radius negotiated by the car, R = 80 cm = 0.8 m
The speed of the car, v = 12 m/s
From tan(θ) = v²/(R·g), we have;
tan(θ) = 12²/(0.8 × 9.81) ≈ 18.349
θ ≈ arctan(18.349°) ≈ 86.88°
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.