Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
(a) The optimum banking Decreases
(b) The optimum banking Increases
(c) The optimum banking is approximately 86.88°
Explanation:
(a) The equation of motion on a banked road is given as follows;
[tex]v = \sqrt{R \cdot g \times \left(\dfrac{tan (\theta) + \mu}{1 - \mu \cdot tan (\theta) }\right) }[/tex]
For no friction, we have;
v = √(R·g·tan(θ))
Where;
R₁ = The radius of the road
g = The acceleration due to gravity ≈ 9.81 m/s² = Constant
θ₁ = The bank angle
μ = The coefficient pf friction = Constant
v = The vehicle's speed
If the radius doubles, for no friction, we have;
v² = R·g·(tan(θ))
tan(θ) = v²/(R·g)
Therefore, when the radius doubles, tan(θ) becomes smaller and therefore, the optimum banking angle θ decreases (becomes smaller)
(b) When the speed doubles, we have;
v₁ = 2·v
∴ tan(θ₁) = (v₁)²/(R·g) = 4·(v)²/(R·g) = 4·tan(θ)
When the speed doubles, tan(θ) increases and therefore, the optimum banking angle θ increases increases
(c) The radius negotiated by the car, R = 80 cm = 0.8 m
The speed of the car, v = 12 m/s
From tan(θ) = v²/(R·g), we have;
tan(θ) = 12²/(0.8 × 9.81) ≈ 18.349
θ ≈ arctan(18.349°) ≈ 86.88°
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.