Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
false.
Step-by-step explanation:
A conditional statement is something like:
If P, then Q.
This means that if a given proposition P is true, then another proposition Q is also true.
An example of this is:
P = its raining
Q = there are clouds in the sky.
So the conditional statement is
If its raining, then there are clouds in the sky.
A biconditional statement is:
P if and only if Q.
This means that P is only true if Q is true, and Q is only true if P is true.
So, using the previous propositions we get:
Its raining if and only if there are clouds in the sky.
This statement is false, because is possible to have clouds in the sky and not rain.
(this statement implies that if there are clouds in the sky, there should be rain)
Then we could see that for the same propositions, the conditional statement is true and the biconditional statement is false.
Then these statements are not logically equivalent.
The statement is false.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.