Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Water steam enters a turbine at a temperature of 400 o C and a pressure of 3 MPa. Water saturated vapor exhausts from the turbine at a pressure of 125 kPa. At steady state, the work output of the turbine is 530 kJ/kg. The surrounding air is at 20 o C. Neglect the changes in kinetic energy and potential energy. Determine (20 points) (a) the heat transfer from the turbine to the surroundings per unit mass flow rate, (b) the entropy generation during this process.

Sagot :

Answer:

a) -505.229 kJ/Kg

b) -1.724 kJ/kg

Explanation:

T1 = 400°C

P1 = 3 MPa

P2 = 125 kPa

work output   = 530 kJ/kg

surrounding temperature = 20°C = 293 k

A) Calculate heat transfer from Turbine to surroundings

Q = h2 + w - h1

h ( enthalpy )

h1 = 3231.229 kj/kg

enthalpy at P2

h2 = hg = 2676 kj/kg

back to equation 1

Q = 2676 + 50 - 3231.229  = -505.229 kJ/Kg  ( i.e.  heat is lost )

b) Entropy generation

entropy generation = Δs ( surrounding )  + Δs(system)

                                =  - 505.229 / 293   + 0

                                = -1.724 kJ/kg