Answered

Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.

Sagot :

I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)

Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.

The 2.0-kg block feels

• the downward pull of its own weight, (2.0 kg) g

• the upward normal force of the surface, magnitude n₁

• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction

• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction

• the applied force, mag. F, pointing in the positive horizontal direction

Meanwhile the 3.0-kg block feels

• its own weight, (3.0 kg) g, pointing downward

• normal force, mag. n₂, pointing upward

• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction

• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)

Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:

• net vertical force:

n₂ - (3.0 kg) g = 0   ==>   n₂ = (3.0 kg) g   ==>   f₂ = 0.30 (3.0 kg) g

• net horizontal force:

c₂ - f₂ = 0   ==>   c₂ = 0.30 (3.0 kg) g8.8 N