Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
<A ≈ 45 degrees
<B ≈ 57 degrees
<C ≈ 78 degrees
Step-by-step explanation:
Hi there!
1) Find <C with the law of cosines
Typically, we want to solve for the angle opposite the largest side first.
Law of cosines: [tex]cosC=\frac{a^2+b^2-c^2}{2(a)(b)}[/tex]
Plug in given values
[tex]cosC=\frac{5^2+6^2-7^2}{2(5)(6)}\\cosC=\frac{1}{5}\\C=cos^-^1(\frac{1}{5} )\\C=78[/tex]
Therefore, <C is approximately 78 degrees.
2) Find <B with the law of cosines
[tex]cosB=\frac{a^2+c^2-b^2}{2(a)(c)}[/tex]
Plug in given values
[tex]cosB=\frac{5^2+7^2-6^2}{2(5)(7)}\\cosB=\frac{19}{35}\\B=cos^-^1(\frac{19}{35})\\B=57[/tex]
Therefore, <B is approximately 57 degrees.
3) Find <A
The sum of the interior angles of a triangle is 180 degrees. To solve for <A, subtract <B and <C from 180:
180-57-78
= 45
Therefore, <A is 45 degrees.
I hope this helps!
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.