Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f​

Sagot :

Answer:

The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".

Explanation:

According to the question,

[tex]R_{C-Cl} = 177 \ pm[/tex]

or,

         [tex]=1.77\times 10^{-10} \ m[/tex]

[tex]\alpha = 107^{\circ}[/tex]

[tex]m_{Cl}=34.97 \ m.u[/tex]

or,

      [tex]=34.97\times 1.66\times 10^{-27}[/tex]

      [tex]=5.807\times 10^{-26} \ kg[/tex]

The moment of inertia around the rotational axis will be:

⇒  [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]

By putting the values, we get

       [tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]

       [tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]

       [tex]=4.991\times 10^{-45} \ kg.m^2[/tex]

Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.