Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Given:
The limit problem is:
[tex]lim_{x\to -5}\dfrac{\dfrac{1}{5}+\dfrac{1}{x}}{10+2x}[/tex]
To find:
The value of the given limit problem.
Solution:
We have,
[tex]lim_{x\to -5}\dfrac{\dfrac{1}{5}+\dfrac{1}{x}}{10+2x}[/tex]
It can be written as:
[tex]=lim_{x\to -5}\dfrac{\dfrac{x+5}{5x}}{2(5+x)}[/tex]
[tex]=lim_{x\to -5}\dfrac{x+5}{5x}\times \dfrac{1}{2(5+x)}[/tex]
[tex]=lim_{x\to -5}\dfrac{1}{5x\times 2}[/tex]
[tex]=lim_{x\to -5}\dfrac{1}{10x}[/tex]
Applying limit, we get
[tex]lim_{x\to -5}\dfrac{1}{10x}=\dfrac{1}{10(-5)}[/tex]
[tex]lim_{x\to -5}\dfrac{1}{10x}=\dfrac{1}{-50}[/tex]
Therefore, the value of given limit problem is [tex]-\dfrac{1}{50}[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.