Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
"down/up the plane" suggests an inclined plane, but no angle is given so I'll call it θ for the time being.
The free body diagram for the crate in either scenario is the same, except for the direction in which static friction is exerted on the crate. With the P = 100 N force holding up the crate, static friction points up the incline and keeps the crate from sliding downward. When P = 350 N, the crate is pushed upward, so static friction points down. (see attached FBDs)
Using Newton's second law, we set up the following equations.
• p = 100 N
∑ F (parallel) = f + p cos(θ) - mg sin(θ) = 0
∑ F (perpendicular) = n - p sin(θ) - mg cos(θ) = 0
• P = 350 N
∑ F (parallel) = P cos(θ) - F - mg sin(θ) = 0
∑ F (perpendicular) = N - P sin(θ) - mg cos(θ) = 0
(where n and N are the magnitudes of the normal force in the respective scenarios; ditto for f and F which denote static friction, so that f = µn and F = µN, with µ = coefficient of static friction)
Solve for n and N :
n = p sin(θ) + mg cos(θ)
N = P sin(θ) - mg cos(θ)
Substitute these into the corresponding equations containing µ, and solve for µ :
µ = (mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ))
µ = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))
Next, you would set these equal and solve for m :
(mg sin(θ) - p cos(θ)) / (mg cos(θ) + p sin(θ)) = (P cos(θ) - mg sin(θ)) / (P sin(θ) + mg cos(θ))
...
Once you find m, you back-substitute and solve for µ, but as you might expect the result will be pretty complicated. If you take a simple angle like θ = 30°, you would end up with
m ≈ 36.5 kg
µ ≈ 0.256
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.