Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The rate of change of T with respect to time is 0.40 K/min
Explanation:
The gas law equation is:
[tex] PV = nRT [/tex]
We can find the rate of change of T with respect to time by solving the above equation for T and derivating with respect to time:
[tex] \frac{dT}{dt} = \frac{d}{dt}(\frac{PV}{nR}) [/tex]
[tex] \frac{dT}{dt} = \frac{1}{nR}(V\frac{dP}{dt} + P\frac{dV}{dt}) [/tex]
Where:
n: is the number of moles = 10 mol
R: is the gas constant = 0.0821
V: is the volume = 13 L
P: is the pressure = 8.0 atm
dP/dt: is the variation of the pressure with respect to time = 0.13 atm/min
dV/dt: is the variation of the volume with respect to time = -0.17 L/min
Hence, the rate of change of T is:
[tex] \frac{dT}{dt} = \frac{1}{10*0.0821}(13*0.13 - 8.0*0.17) = 0.40 K/min [/tex]
Therefore, the rate of change of T with respect to time is 0.40 K/min
I hope it helps you!
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.