Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A 190 g glider on a horizontal, frictionless air track is attached to a fixed ideal spring with force constant 160 N/m. At the instant you make measurements on the glider, it is moving at 0.835 m/sm/s and is 4.00 cmcm from its equilibrium point.

Required:
a. Use energy conservation to find the amplitude of the motion.
b. Use energy conservation to find the maximum speed of the glider.
c. What is the angular frequency of the oscillations?

Sagot :

(a) Let x be the maximum elongation of the spring. At this point, the glider would have zero velocity and thus zero kinetic energy. The total work W done by the spring on the glider to get it from the given point (4.00 cm from equilibrium) to x is

W = - (1/2 kx ² - 1/2 k (0.0400 m)²)

(note that x > 4.00 cm, and the restoring force of the spring opposes its elongation, so the total work is negative)

By the work-energy theorem, the total work is equal to the change in the glider's kinetic energy as it moves from 4.00 cm from equilibrium to x, so

W = ∆K = 0 - 1/2 m (0.835 m/s)²

Solve for x :

- (1/2 (160 N/m) x ² - 1/2 (160 N/m) (0.0400 m)²) = -1/2 (0.190 kg) (0.835 m/s)²

==>   x ≈ 0.0493 m ≈ 4.93 cm

(b) The glider attains its maximum speed at the equilibrium point. The work done by the spring as it is stretched away from equilibrium to the 4.00 cm position is

W = - 1/2 k (0.0400 m)²

If v is the glider's maximum speed, then by the work-energy theorem,

W = ∆K = 1/2 m (0.835 m/s)² - 1/2 mv ²

Solve for v :

- 1/2 (160 N/m) (0.0400 m)² = 1/2 (0.190 kg) (0.835 m/s)² - 1/2 (0.190 kg) v ²

==>   v1.43 m/s

(c) The angular frequency of the glider's oscillation is

√(k/m) = √((160 N/m) / (0.190 kg)) ≈ 29.0 Hz

The amplitude of the motion is 0.049 cm. The maximum speed of the glider is 1.429 m/s. The angular frequency of the oscillation is 29.02 rad/s

From the given information;

  • the mass of the glider = 190 g
  • Force constant k = 160 N/m
  • the horizontal speed of the glider [tex]v_x[/tex] = 0.835 m/s
  • the distance away from the equilibrium = 4.0 cm = 0.04 m

Using energy conservation E, the amplitude of the motion can be calculated by using the formula:

[tex]\mathbf{E = \dfrac{1}{2}mv^2 + \dfrac{1}{2}kx^2}[/tex]

[tex]\mathbf{E = \dfrac{1}{2}(0.19 \ kg )\times (0.835)^2 + \dfrac{1}{2}(160) (0.04)^2}[/tex]

[tex]\mathbf{E =0.194 \ J}[/tex]

Similarly, we know that:

[tex]\mathbf{E = \dfrac{1}{2}kA^2}[/tex]

Making amplitude A the subject, we have:

[tex]\mathbf{A = \sqrt{\dfrac{2E}{k}}}[/tex]

[tex]\mathbf{A = \sqrt{\dfrac{2(0.194)}{160}}}[/tex]

[tex]\mathbf{A =0.049 \ cm}[/tex]

Again, using the energy conservation, the maximum speed of the glider can be calculated by using the formula:

[tex]\mathbf{E =\dfrac{1}{2} mv^2 _{max}}[/tex]

[tex]\mathbf{v _{max} = \sqrt{\dfrac{2E}{m}}}[/tex]

[tex]\mathbf{v _{max} = \sqrt{\dfrac{2\times 0.194}{0.19}}}[/tex]

[tex]\mathbf{v _{max} = 1.429 \ m/s}[/tex]

The angular frequency of the oscillation can be computed by using the expression:

[tex]\mathbf{\omega = \sqrt{\dfrac{k}{m}}}[/tex]

[tex]\mathbf{\omega = \sqrt{\dfrac{160}{0.19}}}[/tex]

ω = 29.02 rad/s

Learn more about energy conservation here:

https://brainly.com/question/13010190?referrer=searchResults