Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
The equation of [tex]f(x) = e^{-3\cdot x}[/tex] by Maclaurin series is [tex]f(x) = \Sigma\limits_{i=0}^{\infty} \frac{(-3\cdot x)^{i}}{i!}[/tex].
Step-by-step explanation:
The Maclaurin series for [tex]f(x)[/tex] is defined by the following formula:
[tex]f(x) = \Sigma\limits_{i = 0}^{\infty} \frac{f^{(i)}(0)}{i!} \cdot x^{i}[/tex] (1)
Where [tex]f^{(i)}[/tex] is the i-th derivative of the function.
If [tex]f(x) = e^{-3\cdot x}[/tex], then the formula of the i-th derivative of the function is:
[tex]f^{(i)} = (-3)^{i}\cdot e^{-3\cdot x}[/tex] (2)
Then,
[tex]f^{(i)}(0) = (-3)^{i}[/tex] (2b)
Lastly, the equation of the trascendental function by Maclaurin series is:
[tex]f(x) = \Sigma\limits_{i=0}^{\infty} \frac{(-3)^{i}\cdot x^{i}}{i!}[/tex]
[tex]f(x) = \Sigma\limits_{i=0}^{\infty} \frac{(-3\cdot x)^{i}}{i!}[/tex] (3)
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.