Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
The time in which the pendulum does a complete revolution is called the period of the pendulum.
Remember that the period of a pendulum is written as:
T = 2*pi*√(L/g)
where:
L = length of the pendulum
pi = 3.14
g = 9.8 m/s^2
Here we know that L = 14.4m
Then the period of the pendulum will be:
T = 2*3.14*√(14.4m/9.8m/s^2) = 7.61s
So one complete oscillation takes 7.61 seconds.
We know that the pendulum starts moving at 8:00 am
We want to know 12:00 noon, which is four hours after the pendulum starts moving.
So, we want to know how many complete oscillations happen in a timelapse of 4 hours.
Each oscillation takes 7.61 seconds.
The total number of oscillations will be the quotient between the total time (4 hours) and the period.
First we need to write both of these in the same units, we know that 1 hour = 3600 seconds
then:
4 hours = 4*(3600 seconds) = 14,400 s
The total number of oscillations in that time frame is:
N = 14,400s/7.61s = 1,892.25
Rounding to the next whole number, we have:
N = 1,892
The pendulum does 1,892 oscillations between 8:00 am and 12:00 noon.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.