Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
The time in which the pendulum does a complete revolution is called the period of the pendulum.
Remember that the period of a pendulum is written as:
T = 2*pi*√(L/g)
where:
L = length of the pendulum
pi = 3.14
g = 9.8 m/s^2
Here we know that L = 14.4m
Then the period of the pendulum will be:
T = 2*3.14*√(14.4m/9.8m/s^2) = 7.61s
So one complete oscillation takes 7.61 seconds.
We know that the pendulum starts moving at 8:00 am
We want to know 12:00 noon, which is four hours after the pendulum starts moving.
So, we want to know how many complete oscillations happen in a timelapse of 4 hours.
Each oscillation takes 7.61 seconds.
The total number of oscillations will be the quotient between the total time (4 hours) and the period.
First we need to write both of these in the same units, we know that 1 hour = 3600 seconds
then:
4 hours = 4*(3600 seconds) = 14,400 s
The total number of oscillations in that time frame is:
N = 14,400s/7.61s = 1,892.25
Rounding to the next whole number, we have:
N = 1,892
The pendulum does 1,892 oscillations between 8:00 am and 12:00 noon.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.