Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
The time in which the pendulum does a complete revolution is called the period of the pendulum.
Remember that the period of a pendulum is written as:
T = 2*pi*√(L/g)
where:
L = length of the pendulum
pi = 3.14
g = 9.8 m/s^2
Here we know that L = 14.4m
Then the period of the pendulum will be:
T = 2*3.14*√(14.4m/9.8m/s^2) = 7.61s
So one complete oscillation takes 7.61 seconds.
We know that the pendulum starts moving at 8:00 am
We want to know 12:00 noon, which is four hours after the pendulum starts moving.
So, we want to know how many complete oscillations happen in a timelapse of 4 hours.
Each oscillation takes 7.61 seconds.
The total number of oscillations will be the quotient between the total time (4 hours) and the period.
First we need to write both of these in the same units, we know that 1 hour = 3600 seconds
then:
4 hours = 4*(3600 seconds) = 14,400 s
The total number of oscillations in that time frame is:
N = 14,400s/7.61s = 1,892.25
Rounding to the next whole number, we have:
N = 1,892
The pendulum does 1,892 oscillations between 8:00 am and 12:00 noon.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.