Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
0.7513 = 75.13% probability that no more than 1 employee was over 50
Step-by-step explanation:
The employees are chosen from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
4 + 16 = 20 employees, which means that [tex]N = 20[/tex]
4 over 50, which means that [tex]k = 4[/tex]
5 were dismissed, which means that [tex]n = 5[/tex]
What is the probability that no more than 1 employee was over 50?
Probability of at most one over 50, which is:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
In which
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,20,5,4) = \frac{C_{4,0}*C_{16,5}}{C_{20,5}} = 0.2817[/tex]
[tex]P(X = 1) = h(1,20,5,4) = \frac{C_{4,1}*C_{16,4}}{C_{20,5}} = 0.4696[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.2817 + 0.4696 = 0.7513[/tex]
0.7513 = 75.13% probability that no more than 1 employee was over 50
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.